Real-Time Visual Tracking: Promoting the Robustness of Correlation Filter Learning

نویسندگان

  • Yao Sui
  • Ziming Zhang
  • Guanghui Wang
  • Yafei Tang
  • Li Zhang
چکیده

Correlation filtering based tracking model has received lots of attention and achieved great success in real-time tracking, however, the lost function in current correlation filtering paradigm could not reliably response to the appearance changes caused by occlusion and illumination variations. This study intends to promote the robustness of the correlation filter learning. By exploiting the anisotropy of the filter response, three sparsity related loss functions are proposed to alleviate the overfitting issue of previous methods and improve the overall tracking performance. As a result, three real-time trackers are implemented. Extensive experiments in various challenging situations demonstrate that the robustness of the learned correlation filter has been greatly improved via the designed loss functions. In addition, the study reveals, from an experimental perspective, how different loss functions essentially influence the tracking performance. An important conclusion is that the sensitivity of the peak values of the filter in successive frames is consistent with the tracking performance. This is a useful reference criterion in designing a robust correlation filter for visual tracking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Switching particle filters for efficient visual tracking

In this article, we propose a new particle filtering scheme, called a switching particle filter, which allows robust and accurate visual tracking under typical circumstances of real-time visual tracking. This scheme switches two complementary sampling algorithms, Condensation and Auxiliary Particle Filter, in an on-line fashion based on the confidence of the filtered state of the visual target....

متن کامل

Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Ke...

متن کامل

Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot

The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...

متن کامل

Exploiting Contextual Motion Cues for Visual Object Tracking

In this paper, we propose an algorithm for on-line, real-time tracking of arbitrary objects in videos from unconstrained environments. The method is based on a particle filter framework using different visual features and motion prediction models. We effectively integrate a discriminative on-line learning classifier into the model and propose a new method to collect negative training examples f...

متن کامل

Comparative Study of ECO and CFNet Trackers in Noisy Environment

Object tracking is one of the most challenging task and has secured significant attention of computer vision researchers in the past two decades. Recent deep learning based trackers have shown good performance on various tracking challenges. A tracking method should track objects in sequential frames accurately in challenges such as deformation, low resolution, occlusion, scale and light variat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016